Acetylation regulates the differentiation-specific functions of the retinoblastoma protein.
نویسندگان
چکیده
The retinoblastoma tumor-suppressor protein (pRb) is known to induce growth arrest and cellular differentiation. The molecular determinants of pRb function include protein-protein interactions and post-translational modifications such as phosphorylation. Recently, the co-activator p300 was found to acetylate pRb. The biological significance of pRb acetylation, however, remains unclear. In the present study, we provide evidence that pRb undergoes acetylation upon cellular differentiation, including skeletal myogenesis. In addition to p300, the p300-Associated Factor (P/CAF) can mediate pRb acetylation as pRb interacts directly with the acetyltransferase domain of P/CAF in vitro and can associate with P/CAF in differentiated cells. Significantly, by using a C terminal acetylation-impaired mutant of pRb, we reveal that acetylation does not affect pRb-dependent growth arrest or the repression of E2F transcriptional activity. Instead, acetylation is required for pRb-mediated terminal cell cycle exit and the induction of late myogenic gene expression. Based on these results, we propose that acetylation regulates the differentiation-specific function(s) of pRb.
منابع مشابه
Acetylation of Rb by PCAF is required for nuclear localization and keratinocyte differentiation.
Although the retinoblastoma protein (Rb) functions as a checkpoint in the cell cycle, it also regulates differentiation. It has recently been shown that Rb is acetylated during differentiation; however, the role of this modification has not been identified. Depletion of Rb levels with short hairpin RNA resulted in inhibition of human keratinocyte differentiation, delayed cell cycle exit and all...
متن کاملMinireview: Cyclin D1: normal and abnormal functions.
Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates and inactivates the retinoblastoma protein and promotes progression through the G1-S phase of the cell cycle. Amplification or overexpression of cyclin D1 plays pivotal roles in the development of a subset of human cancers including parathyroid adenoma, breast cancer, colon cancer, lymphoma, melanoma, and prostate canc...
متن کاملA conserved family of WD-40 proteins binds to the retinoblastoma protein in both plants and animals.
In mammalian cells, the retinoblastoma (RB) protein regulates G1 progression and functions through its association with various cellular proteins. Two closely related mammalian RB binding proteins, RbAp48 and RbAp46, share sequence homology with the Msi1 protein of yeast. MSI1 is a multicopy suppressor of a mutation in the IRA1 gene involved in the Ras-cAMP pathway that regulates cellular growt...
متن کاملP53 Regulates Myogenesis by Triggering the Differentiation Activity of Prb
The p53 oncosuppressor protein regulates cell cycle checkpoints and apoptosis, but increasing evidence also indicates its involvement in differentiation and development. We had previously demonstrated that in the presence of differentiation-promoting stimuli, p53-defective myoblasts exit from the cell cycle but do not differentiate into myocytes and myotubes. To identify the pathways through wh...
متن کاملLoss of Rb1 by epigenetic modification regulates expansion of MDSC in cancer
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells with potent immune suppressive activity in cancer and many other pathologic conditions. MDSCs consist of two major subsets: monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs). Each subset of MDSCs is thought to be developed through the separate differentiation pathways. Here, we demonstrated that in a tum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 23 7 شماره
صفحات -
تاریخ انتشار 2004